Spezielle Relativität – Arbeitsblatt: Vierervektoren Thomas Sean Weatherby,

(Aufgaben teilweise adaptiert aus Steane, Relativity Made Relatively Easy.)

1. Grundlegende Definitionen

Schreibe die mathematischen Definitionen für die folgenden Größen auf:

- (i) Viererposition **X**,
- (ii) Eigenzeit τ in Bezug auf die Koordinatenzeit t,
- (iii) Vierergeschwindigkeit U,
- (iv) Viererimpuls \mathbf{P} ,
- (v) Minkowski-Metrik g mit der Signatur (-+++),
- (vi) Minkowski-Norm eines Vierervektors A,
- (vii) Lorentz-Transformation \mathcal{L} bei einem Boost in x-Richtung.

2. Invarianz der Minkowski-Norm

Zeige, dass die Minkowski-Norm der Viererposition unter Lorentz-Transformationen invariant ist. Mit zwei Methoden:

- (i) Für $\mathbf{X}' = \mathcal{L}\mathbf{X}$ für einen Boost in x-Richtung. **Zeige** die Invarianz algebraisch durch das Einsetzen der Komponenten.
- (ii) **Verallgemeinere** für einen beliebigen Vierervektor **A** ist die Minkowski-Norm invariant, wenn die Lorentz-Transformation die Bedingung $\mathcal{L}^{\mathsf{T}}g\mathcal{L}=g$ erfüllt.

3. Relativität der Gleichzeitigkeit mit Vierervektoren

Im Bezugssystem Bahnhof, S, fährt ein Zug mit Geschwindigkeit v in positiver x-Richtung. Zwei Blitze treffen die Zugenden (vorn und hinten) im Bezugssystem S gleichzeitig.

- (i) Skizziere die Situation in S und S'.
- (ii) Gib die Koordinaten der Ereignisse in den beiden Bezugssystemen im Diagramm an.
- (iii) **Verwende** die Invarianz der Minkowski-Norm, um zu zeigen, dass in anderen Bezugssystemen die Blitze nicht gleichzeitig einschlagen.

4. Photon im bewegtem Bezugssystem

Ein Photon hat im Bezugssystem, S', $\mathbf{v}'_{\text{Photon}} = (c\cos\theta, c\sin\theta, 0)$, das System S' bewegt sich mit v entlang der x-Achse relativ zu S. Bestimme v_x, v_y in S und zeige $\|\mathbf{v}\| = c$.

5. Energie und Impuls als Vierervektor

- (i) Anhand der Definition von Aufgabe (1iv), **berechne** $\|\mathbf{P}\|^2$.
- (ii) **Definiere** die Ruhemasse m_0 und die relativistische Masse m_r . **Schreibe** die Beziehung zwischen beiden.
- (iii) **Erkläre** den Unterschied zwischen die klassische Impuls $m_0\vec{v}$ und den unteren drei Komponenten der Viererimpuls (Dreierimpuls).
- (iv) Nenne sorgfältig die drei Gesetze zur Erhaltung des Vierimpulses bzw. seiner Komponenten.

6. Photonabsorption

Ein ruhendes Atom (Masse M) absorbiert ein Photon (Energie $\hbar\omega$, Impuls $\hbar\mathbf{k}$). **Bestimme** mithilfe der Viererimpulserhaltung die Geschwindigkeit des Atoms nach der Absorption.

7. Fusion Zwei Teilchen

Zwei identische Teilchen der Masse m kollidieren collinear mit relativen Geschwindigkeit $\beta = \frac{3}{5}$ und fusionieren zu einem Teilchen. Bestimme seine Masse im Schwerpunktsystem.

8. Eigenzeit aus Messdaten

Ein Myon hat eine mittlere Lebensdauer von $\tau_0 = 2, 2 \cdot 10^{-6} \,\mathrm{s}$ und kinetische Energie $T = 5 \,\mathrm{GeV}$ und Ruheenergie $m_0 c^2 = 106 \,\mathrm{MeV}$. Bestimme:

- (i) γ .
- (ii) die dilatierte Lebensdauer im Laborsystem und
- (iii) die mittlere Flugstrecke ($v \simeq c$).

9. Zeitartigkeit vs. Raumartigkeit

Zeige algebraisch:

- (i) Die zeitliche Reihenfolge zweier Ereignisse ist in allen Inertialsystemen gleich ⇔ der Abstand ist zeitartig.
- (ii) Es existiert ein Inertialsystem, in dem zwei Ereignisse gleichzeitig sind ⇔ der Abstand ist raumartig.